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a b s t r a c t

We present a finite difference method for discretizing a Heaviside function Hðuð~xÞÞ, where
u is a level set function u : Rn # R that is positive on a bounded region X � Rn . There are
two variants of our algorithm, both of which are adapted from finite difference methods
that we proposed for discretizing delta functions in [J.D. Towers, Two methods for discret-
izing a delta function supported on a level set, J. Comput. Phys. 220 (2007) 915–931; J.D.
Towers, Discretizing delta functions via finite differences and gradient normalization, Pre-
print at http://www.miracosta.edu/home/jtowers/; J.D. Towers, A convergence rate theo-
rem for finite difference approximations to delta functions, J. Comput. Phys. 227 (2008)
6591–6597]. We consider our approximate Heaviside functions as they are used to approx-
imate integrals over X. We prove that our first approximate Heaviside function leads to
second order accurate quadrature algorithms. Numerical experiments verify this second
order accuracy. For our second algorithm, numerical experiments indicate at least third
order accuracy if the integrand f and @X are sufficiently smooth. Numerical experiments
also indicate that our approximations are effective when used to discretize certain singular
source terms in partial differential equations.

We mostly focus on smooth f and u. By this we mean that f is smooth in a neighborhood
of X, u is smooth in a neighborhood of @X, and the level set uðxÞ ¼ 0 is a manifold of codi-
mension one. However, our algorithms still give reasonable results if either f or u has jumps
in its derivatives. Numerical experiments indicate approximately second order accuracy for
both algorithms if the regularity of the data is reduced in this way, assuming that the level
set uðxÞ ¼ 0 is a manifold.

Numerical experiments indicate that dependence on the placement of X with respect to
the grid is quite small for our algorithms. Specifically, a grid shift results in an OðhpÞ change
in the computed solution, where p is the observed rate of convergence.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

We are concerned with the problem of approximating the integral
I :¼
Z

X
f ð~xÞd~x; ð1Þ
where~x ¼ ðx1; . . . ; xnÞ 2 Rn and X ¼ f~x 2 Rn : uð~xÞ > 0g. We assume that the zero level set @X ¼ f~x 2 Rn : uð~xÞ ¼ 0g is a com-
pact manifold of codimension one defined by the zero level set of a function uð~xÞ. The data f and u are only defined at the
discrete set of mesh points of a regular grid. This problem arises frequently in applications of the level set method
[7,8,10]. In this context it is common practice to write the integral I as
. All rights reserved.

http://www.miracosta.edu/home/jtowers/
mailto:john.towers@cox.net
http://www.miracosta.edu/home/jtowers/
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


J.D. Towers / Journal of Computational Physics 228 (2009) 3478–3489 3479
I ¼
Z

Rn
Hðuð~xÞÞf ð~xÞd~x; ð2Þ
where Hð�Þ denotes the Heaviside function
HðzÞ ¼
0; z < 0;
1; z > 0:

�
ð3Þ
When viewed in this manner, the problem of approximating the integral I boils down to producing a discrete approximation
of the Heaviside function Hðuð~xÞÞ.

The problem of quadrature over an irregular region X � Rn, while not as much studied as quadrature on an interval of R1,
is classical and can be found in textbooks, e.g. [2,3]. The problem considered here has some constraints not generally im-
posed in classical treatments, primarily that the boundary is defined by a level set, and secondarily that the data are only
given on a regular grid.

Even for quadrature problems not related to the level set method, the new methods that we describe below may be useful
for obtaining moderately accurate results with minimal problem-dependent setup. This is based on the fact that if u1 and u2

are level set functions for a pair of regions X1;X2 � Rn, then minðu1;u2Þ is a level set function for the set X1 \X1 and
maxðu1;u2Þ is a level set function for the set X1 [X1. This makes it easy to construct level set functions for fairly complicated
sets X.

Let f~xk ¼ ðx1
k1
; . . . ; xn

kn
Þjk :¼ ðk1; . . . ; knÞ 2 Zng denote the set of mesh points of the regular grid. We assume that the mesh

spacing h is the same in all directions, xi
ki
¼ kih; ki 2 Z. Clearly the most straightforward approximation of I is
I � hn
X
k2Zn

Hðuð~xkÞÞf ð~xkÞ: ð4Þ
This method yields convergent approximations, but is only first order accurate.
One can also use a regularized Heaviside function H�, approximating I via
I � hn
X
k2Zn

H�ðuð~xkÞÞf ð~xkÞ: ð5Þ
A regularized version of the Heaviside function that is often used in level set applications is H� ¼ HC;�, where
HC;�ðzÞ ¼
HðzÞ; jzjP �;
1
2þ z

2�þ 1
2p sinðpz

� Þ; jzj 6 �;

(
� ¼ OðhÞ: ð6Þ
Another commonly used approximate Heaviside function is
HL;�ðzÞ ¼
HðzÞ; jzjP �;
1

2� ðzþ �Þ; jzj 6 �;

(
� ¼ OðhÞ: ð7Þ
Engquist et al. [4] gave a numerical example where the method (5) using HL;� defined in (7) gives only first order conver-
gence. They proposed replacing the constant � ¼ h=2 with a version � ¼ �ðh;ruÞ that takes the gradient of the level set func-
tion u into account, and reported second order convergence.

Approximating the integral (2) can be viewed as the problem of quadrature of a discontinuous function. This problem has
been studied by Tornberg [11]. Tornberg proposed regularizing the Heaviside function, and then applying a standard quad-
rature technique to the resulting smooth integrand. This approach allows one to analyze separately the error contributions
from regularization and quadrature.

Tornberg and Engquist [12] proposed a method of regularizing the characteristic function of a region X that is based on
integrating a product of one-dimensional smeared out delta functions, the region of integration being X. They proved that it
is possible to construct algorithms with any desired order of accuracy (as measured by approximating the integral I),
depending on the order of the one-dimensional delta functions that are used. These algorithms also have the desirable prop-
erty that away from the boundary @X, the discretized version of the characteristic function is the same as the exact one.

Min and Gibou [5] have also proposed a method for approximating the integral I . Their method involves decomposition
of the region into simplices. A quadrature rule is then applied on the simplices, and the resulting approximation to I is sec-
ond order accurate. In [6] these authors used their technique to produce an explicit approximation to the Heaviside function.
An advantage of their method is that it is not sensitive to the placement of the region X with respect to the mesh. These
authors attribute this to the fact that their algorithms do not use derivative data.

The approach in the present paper is based on the idea of approximating the Heaviside function by finite differencing its
first few primitives. We used this technique to approximate delta functions in [13–15].

We assume that u is defined and positive on X, and that X is bounded (see Fig. 1). In addition, we assume that for some
a > 0, u is defined and smooth on a band of the form Ba ¼ f~x : juð~xÞj < ag surrounding @X. We further assume that f is also
defined and smooth on X

S
Ba, and that for some r > 0; ruj j > r for ~x 2 Ba. Note that since u > 0 in X, the unit outward

(from X) normal vector ~n satisfies ~n ¼ �ru= ruj j.



Ω

∂ Ω
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Fig. 1. The region of integration X defined by the level set u ¼ 0.
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Let f~e1; . . . ;~eng be the standard basis for Rn. If vk ¼ vð~xkÞ is a function defined at each grid point~xk, we define the second
order accurate discrete gradient operator r2;h via
r2;hvk ¼
Xn

m¼1

vð~xk þ h~emÞ � vð~xk � h~emÞ
2h

� �
~em ð8Þ
and the fourth order discrete gradient:
r4;hvk ¼
4
3
r2;hvk �

1
3

Xn

m¼1

vð~xk þ 2h~emÞ � vð~xk � 2h~emÞ
4h

� �
~em: ð9Þ
We will need the first two primitives of HðzÞ:
IðzÞ ¼
Z z

0
HðfÞdf; JðzÞ ¼

Z z

0
IðfÞdf: ð10Þ
To derive our approximations to Hð�Þ, we start from the relationships
rJðuð~xÞÞ ¼ Iðuð~xÞÞruð~xÞ;
rIðuð~xÞÞ ¼ Hðuð~xÞÞruð~xÞ;

ð11Þ
then take the inner product with ru, and next solve for H and I. This yields the relationships
IðuÞ ¼ rJðuÞ � ru= ruj j2;
HðuÞ ¼ rIðuÞ � ru= ruj j2:

ð12Þ
The final step in deriving our approximations is to discretize (12). Before doing so, note that these expressions are undefined
whereverru vanishes. This is not really a problem, since our approximate Heaviside functions will only differ from the exact
Heaviside function in a narrow band surrounding @X, where ruj j > 0.

Let N m denote the set of grid points~xk which are separated from the interface @X by m mesh widths or less:
~xk 2 N m () uð~xkÞuð~xk � mhemÞ 6 0 for some m 2 f1; . . . ;ng: ð13Þ
By discretizing just the second relationship in (12), we get the one-step algorithm FDMH1
FDMH1 :

H1;h
k ¼

HðukÞ; ~xk R N 1;

r2;hIðukÞ � r2;huk=jr2;hukj2; ~xk 2 N 1:

(
ð14Þ
FDMH1 requires that u be smooth for all points ~xk 2 N 2, basically a band two grid points wide on each side of the inter-
face. Note that the band N 2 where we require that u be smooth is slightly wider than the band N 1 where the formula for
H1;h

k is nontrivial. This is due to the stencil of the discrete gradient r2;h. For points~xk outside of N 2, we only need to know
the sign of uk.
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By discretizing both relationships in (12), we get the two-step algorithm FDMH2
FDMH2 :

I2;h
k ¼

IðukÞ; ~xk R N 4;

r4;hJðukÞ � r4;huk=jr4;hukj2; ~xk 2 N 4;

(

H2;h
k ¼

HðukÞ; ~xk R N 4;

r4;hI2;h
k � r

4;huk=jr4;hukj2; ~xk 2 N 4:

( ð15Þ
Note that for FDMH2 we are using the fourth order discrete gradient. FDMH2 requires that u be smooth for all points~xk 2 N 6,
a band that is basically six grid points wide on each side of the interface.

Once we have computed the approximate Heaviside function Hq;h
k (q=1 or 2), we approximate the integral (16) via
Iq;h ¼ hn
X
k2Zn

Hq;h
k f ð~xkÞ: ð16Þ
For our convergence theory, we require that the level set function u be smooth in the narrow band Ba, of width O(1), near @X.
Outside of this narrow band, there are no regularity requirements; we only need u to be positive inside X and negative out-
side X. This is important in level set applications, where u is often a signed distance function, and is likely to have kinks at
some finite distance from @X. In practice, we only need to compute the nontrivial version of u in an O(h) band around @X;
outside of that band only the sign of u is used. This is also important in level set applications; the computational cost can be
reduced greatly by computing u only in an O(h) band [1,9].

We require for our convergence theory that the integrand f be defined and smooth not only inside X, but also in a narrow
band, Ba nX, of width O(1) outside of X. In many level set applications, f � 1. In these cases extending f is trivial. In applica-
tions where f is not constant, and is only known inside of X, we require that it is possible to extend it smoothly onto a narrow
band of width O(1) outside of X. For our algorithms, one would only need to compute this extension of f in an O(h) band.

The advantages of the algorithms presented here are simplicity and accuracy. A potential drawback, depending on the
application, is that our algorithms are slightly dependent on the placement of X with respect to the grid. This grid placement
sensitivity is consistent with the observation of Min and Gibou [5,6] that algorithms which use derivative data will be some-
what more sensitive to perturbations of the data than those that do not. Our FDMH1 algorithm, which uses only first deriv-
ative data, is generally less sensitive to grid perturbations than FDMH2, which uses second derivative data. We emphasize
that our algorithms are nevertheless quite accurate, and that the observed grid placement sensitivity is small. Our numerical
experiments indicate that the change in the computed solution due to a grid shift is OðhpÞ, where p is the observed rate of
convergence.

In Section 2, we prove that the algorithm FDMH1 converges at a rate of Oðh2Þ for sufficiently smooth data. In Section 3, we
verify this rate of convergence via numerical examples. We also provide numerical examples indicating that if the data is
smooth enough, FDMH2 converges at a rate of Oðh3Þ. Our numerical experiments indicate that both methods degrade grace-
fully with reduced regularity, and continue to give usable results. More specifically, if u or f has jumps in the first derivatives,
numerical experiments indicate approximately Oðh2Þ convergence for both methods, assuming that the level set u ¼ 0 is a
manifold. A limited amount of testing in the more degenerate situation where u ¼ 0 fails to be a manifold (for example
u ¼ 0 consists of two touching circles in R2) indicates second order convergence for FDMH1 and first order convergence
for FDMH2. Also in Section 3, we test our FDMH approximate Heaviside functions as singular source terms in the heat equa-
tion, and the Poisson equation. We observe convergence rates of approximately second order, and find that our new algo-
rithms are more accurate than a commonly used approximate Heaviside function.

2. A convergence proof for FDMH1

In this section, we show that under suitable regularity assumptions, the approximation I1;h converges to I at a rate of
Oðh2Þ. Let l be a C1 function l : R # ½0;1� such that lðrÞ ¼ 1 for jrj < a=4 and lðrÞ ¼ 0 for jrjP a=2. Let qð~xÞ ¼ lðuð~xÞÞ,
and define
f̂ ð~xÞ ¼ qð~xÞf ð~xÞ; �f ¼ ð1� qð~xÞÞf ð~xÞ: ð17Þ
Note that both f̂ and HðuÞ�f are as smooth as f, and that both f̂ and HðuÞ�f have compact support. Moreover suppðHðuÞ�f Þ � X,
and for h sufficiently small, we will have
H1;h
k

�f ð~xkÞ ¼ HðukÞ�f ð~xkÞ: ð18Þ
One more observation that will prove useful is that for ~xk 2 Ba=2, and for h small enough,
H1;h
k ¼ r

2;hIðukÞ � r2;huk= r2;huk

��� ���2: ð19Þ
This results from (14) and the fact that the formula on the right side reduces to HðukÞ for k R N 1 in the region where u is
smooth.
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For our analysis, we will use the following decomposition of I:
I ¼
Z

Rn
Hðuð~xÞÞf̂ ð~xÞd~x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:P

þ
Z

Rn
Hðuð~xÞÞ�f ð~xÞd~x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:Q

: ð20Þ
The first of these integrals, P, contains a discontinuous integrand. This is where our method of discretizing Hðuð~xÞÞ comes into
play. On the other hand, the second integral, Q, involves a smooth integrand with compact support, and can be approximated
accurately without employing any special processing for the Hðuð~xÞÞ term.

Lemma 2.1. Let
Fð~xÞ ¼ �r � ðf̂ ð~xÞru=jruj2Þ: ð21Þ
If f 2 C1ðX [ BaÞ, u 2 C2ðBaÞ, then
Z
Rn

IðuÞFð~xÞd~x ¼ P: ð22Þ
Proof. We integrate by parts:
Z
Rn

IðuÞFð~xÞd~x ¼ �
Z

Rn
IðuÞr � ðf̂ ð~xÞru=jruj2Þd~x

¼ �
Z

Rn
r � ðIðuÞf̂ ð~xÞru=jruj2Þd~xþ

Z
Rn
rIðuÞ � ðf̂ ð~xÞru=jruj2Þd~x

¼
Z

Rn
HðuÞru � ðf̂ ð~xÞru=jruj2Þd~x ¼

Z
Rn

HðuÞf̂ ð~xÞd~x: ð23Þ
Here we have used the fact that f̂ has compact support to conclude that the integral of the form
R
r � ð� � �Þd~x vanishes. h

Before stating our convergence theorem, note that if ~wk vanishes for maxfjk1j; . . . ; jknjg sufficiently large, then the follow-
ing summation by parts formula holds:
X

k2Zn

r2;hvk � ~wk ¼ �
X
k2Zn

vkr2;h � ~wk: ð24Þ
Theorem 2.1. If f 2 C3ðX [ BaÞ; u 2 C4ðBaÞ, then I1;h !
R
X f ð~xÞd~x as h! 0, and
I1;h ¼
Z

X
f ð~xÞd~xþ Oðh2Þ: ð25Þ
Proof. We first break I1;h into two parts, resulting in a discrete version of the decomposition (20):
I1;h ¼ hn
X
k2Zn

H1;h
k f ð~xkÞ ¼ hn

X
k2Zn

H1;h
k f̂ ð~xkÞ þ hn

X
k2Zn

H1;h
k

�f ð~xkÞ ¼ hn
X

k2Zn H1;h
k f̂ ð~xkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:Ph

þhn
X

k2Zn HðukÞ�f ð~xkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Qh

: ð26Þ
Here we have used (18) to replace H1;h
k by HðukÞ in the second sum. Recalling that HðuÞ�f is smooth and compactly supported,

we can view Q h as a multidimensional midpoint rule approximation to the integral Q defined in (20). It follows that
Qh ¼ Q þ Oðh2Þ.

The remainder of the proof consists of showing that Ph ¼ P þ Oðh2Þ. Let Rk denote the grid cube centered at ~xk whose
edges all have length h. Let K denote the set of indices k where IðuÞFð~xÞ is not identically zero on Rk. In view of Lemma 2.1, it
is clear that
P ¼
X
k2K

Z
Rk

IðuÞFð~xÞd~x: ð27Þ
On the other hand, recalling the definition (14) of H1;h
k , and then employing (19), the sum Ph is given by
Ph ¼ hn
X
k2Zn

ðr2;hIðukÞ � r2;huk=jr2;hukj2Þf̂ ð~xkÞ: ð28Þ
Let F h
k be the following discrete analog of the quantity F defined in (21):
F h
k ¼ �r2;h � ðf̂ ð~xkÞr2;huk=jr2;hukj2Þ: ð29Þ
Summing (28) by parts using (24), and then recalling (29) yields
Ph ¼ hn
X
k2Zn

IðukÞF h
k: ð30Þ
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Due to the smoothness of f̂ and u, F h
k ¼ Fð~xkÞ þ Oðh2Þ. Also, since f̂ has compact support, the number of indices k where F h

k is
nonzero is Oðh�nÞ. These observations allow us to replace (30) by
Table 1
Relative

h

.05

.05/2

.05/4

.05/8

.05/16
Ph ¼ hn
X
k2Zn

IðukÞFð~xkÞ þ Oðh2Þ ¼ hn
X
k2K

IðukÞFð~xkÞ þ Oðh2Þ: ð31Þ
To get this last equality, we have used the fact that
P

k2Zn IðukÞFð~xkÞ ¼
P

k2K IðukÞFð~xkÞ. By comparing (31) and (27), it is evi-
dent that the proof will be complete as soon as we show that
hn
X
k2K

IðukÞFð~xkÞ ¼
X
k2K

Z
Rk

IðuÞFð~xÞd~xþ Oðh2Þ: ð32Þ
Let K1 denote the set of indices k 2 K where Rk does not intersect @X, and let K2 ¼ K n K1. For k 2 K1; IðuÞFð~xÞ 2 C2ðRkÞ. For
these indices, the multidimensional version of the midpoint rule yields
hnIðukÞFð~xkÞ ¼
Z

Rk

IðuÞFð~xÞd~xþ Oðhnþ2Þ; k 2 K1: ð33Þ
For k 2 K2, we have IðuÞFð~xÞ 2 LipðRkÞ. For these indices,
hnIðukÞFð~xkÞ ¼
Z

Rk

IðuÞFð~xÞd~xþ Oðhnþ1Þ; k 2 K2: ð34Þ
Since Fð~xÞ has compact support, the number of indices k 2 K1 is Oðh�nÞ. Due to the fact that @X is a compact n� 1 dimen-
sional manifold, the number of indices k 2 K2 is Oðh1�nÞ. Combining these observations with (33) and (34), we have proven
(32), and the proof of the theorem is complete. h

Remark 2.1. The regularity conditions imposed on f and u in Theorem 2.1 are probably stronger than required. For example,
our numerical examples seem to indicate Oðh2Þ convergence for FDMH1 even if f or u has jumps in the first derivatives that
occur along a finite number of n� 1 dimensional manifolds.

Remark 2.2. The proof of a similar theorem for FDMH2 is not quite a straightforward modification of the proof of Theorem
2.1. We leave this for a future paper.
3. Numerical examples

Example 1. In this example, X � R2 is the interior of the ellipse x2 þ ð2yÞ2 ¼ 1, and the integrand is f ðx; yÞ ¼ ex. We rotated
the grid by 45�. The value of the integral is I � 1:775499689218604. We tested both FDMH algorithms using both a signed

distance function uðx; yÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ð2yÞ2

q
, and also uðx; yÞ ¼ 1� ðx2 þ ð2yÞ2Þ, which is not a signed distance function. Table

1 shows that FDMH1 seems to be converging at a rate of about Oðh2Þ, and FDMH2 seems to be converging at a rate of Oðh4Þ.
The errors shown in Table 1 are the absolute values of the relative errors, averaged over a number of small random grid
shifts. The number of grid shifts for any given calculation appears in parentheses in the heading of the table.

In Table 2, we focus on the sensitivity of the algorithms to grid shifts. This table shows the ratio of the maximum error to
the average error (the type of error shown in Table 1). This maximum/average error ratio can be viewed as a measure of the
sensitivity to grid shifts. The idea of considering a ratio like this comes from Min and Gibou [5] who use instead the ratio of
the maximum to the minimum error. We see from Table 2 that FDMH2 is somewhat more sensitive to grid shifts than
FDMH1. Nevertheless, in all cases the maximum error is a small multiple of the average error. This means for example that
the average errors displayed in Table 1 are not too different from the worst case. Based on the observed convergence rates in
Table 1, these small ratios also imply that, although a grid shift causes a change in the computed answer, the magnitude of
that change is Oðh2Þ for FDMH1 and Oðh4Þ for FDMH2.
errors for Example 1. X 2 R2 is an ellipse.

FDMH1 FDMH2

Dist. function (64) Non-dist. function (8) Dist. function (1024) Non-dist. function (32)

Error Rate Error Rate Error Rate Error Rate

3.55e�4 3.38e�3 1.04e�5 1.63e�5
8.96e�5 1.99 8.46e�4 2.00 4.03e�7 4.69 8.69e�7 4.22
2.11e�5 2.09 2.12e�4 2.00 2.03e�8 4.31 5.50e�8 3.98
5.50e�6 1.94 5.31e�5 2.00 1.27e�9 4.00 3.49e�9 3.98
1.36e�6 2.20 1.32e�5 2.00 7.77e�11 4.03 2.05e�10 4.09



Table 2
Sensitivity to grid shifts for Example 1. X 2 R2 is an ellipse.

h FDMH1 FDMH2

Dist. function (64) Non-dist. function (8) Dist. function (1024) Non-dist. function (32)
Ratio Ratio Ratio Ratio

.05 1.47 1.02 1.74 1.35

.05/2 1.25 1.01 2.36 1.37

.05/4 1.27 1.00 3.54 1.96

.05/8 1.09 1.00 2.85 1.62

.05/16 1.09 1.00 3.28 2.23
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Example 2. In this example X � R3 is the ellipsoid
Table 3
Errors f

h

.05

.05/2

.05/4

.05/8

Table 4
Sensitiv

h

.05

.05/2

.05/4
q :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=aÞ2 þ ðy=bÞ2 þ ðz=cÞ2

q
< 1; a ¼ 1=2; b ¼ 1=2:5; c ¼ 1=3: ð35Þ
The integrand is f ðx; y; zÞ ¼ expð�q3=3Þ. The exact value of the integral is I ¼ 4pabcð1� e�1=3Þ. We used a signed distance
function for the level set function u(x,y,z). We rotated all coordinates by the matrix A defined by
A ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0 �1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

2=
ffiffiffi
6
p

�1=
ffiffiffi
6
p

�1=
ffiffiffi
6
p

2
64

3
75 ð36Þ
before applying the grid.
Table 3 indicates that FDMH1 converges at a rate of Oðh2Þ for this problem, and FDMH2 converges at a rate of Oðh4Þ.
Table 4 shows the results of a grid placement sensitivity study. We used 16 random grid shifts for each reported mesh

size. The maximum/average error ratios are close to one for this example, indicating that the average errors reported in Table
3 are close to the worst case. As in the case of Example 1, this table indicates that a grid shift results in an Oðh2Þ change in the
result for FDMH1, and the change is Oðh4Þ for FDMH2.

Example 3. This example is borrowed from [4]. The problem is to compute an integral of the form (16) where f ðx; yÞ ¼ 1, and
X is the capsule shaped region described in [4]. In addition to testing FDMH1 and FDMH2, we tested the regularized Heav-
iside function described in [4], which we denote HL;~�. HL;~� is given by (7), except with the constant � replaced by the variable ~�
defined by
~� ¼ jr
2;huj;kj1
jr2;huj;kj

� h
2
: ð37Þ
Here j � j1 denotes the L1 norm. Table 5 shows the absolute values of the relative errors using a signed distance function for
the level set function uðx; yÞ. The algorithm based on HL;~� seems to be converging like Oðh2Þ, in agreement with the results of
[4]. The FDMH algorithms also give accurate results for this problem. It is not clear from the data in Table 5 what their rates
of convergence are.
or Example 2. X 2 R3 is an ellipsoid.

FDMH1 (4) FDMH2 (4)

Error Rate Error Rate

4.48e�3 1.57e�4
1.12e�3 2.00 9.47e�6 4.05
2.79e�4 2.00 5.55e�7 4.09
6.97e�5 2.00 3.38e�8 4.04

ity to grid shifts for Example 2. X 2 R3 is an ellipsoid.

FDMH1 (16) FDMH2 (16)
Ratio Ratio

1.02 1.04
1.10 1.03
1.00 1.02



Table 5
Errors for Example 3. (capsule region) using a signed distance function.

h HL;~� (64) FDMH1 (64) FDMH2(64)

Error Rate Error Rate Error Rate

.02 3.92e�4 1.36e�5 1.26e�5

.02/2 9.43e�5 2.06 5.42e�6 1.33 5.10e�7 4.63

.02/4 2.37e�5 1.99 6.20e�7 3.13 4.83e�8 3.40

.02/8 5.56e�6 2.09 1.18e�7 2.39 2.04e�9 4.57
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Table 6 shows the results using a level set function that is not a signed distance function, but is smoother than the signed
distance function used to construct Table 5. The algorithm based on HL;~� and FDMH1 seem to be converging like Oðh2Þ, and
FDMH2 appears to be converging at a rate of Oðh4Þ.

Both level set functions used in this example have jumps in their second derivatives; the jump for the smoother version is
about 1=8 the size of the jump for the signed distance function. This lack of smoothness may explain why the numerical
results do not show a clear rate of convergence in some cases for the FDMH algorithms.

Example 4. For this example, the region X � R2 is the intersection of the disk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< R :¼ :35

ffiffiffi
2
p

with the half plane
x� y > 0. X is a half disk, with the linear part of the boundary misaligned with the coordinate axes by 45 degrees. The inte-
grand is f ðx; yÞ ¼ x2, and the exact value of the integral is I ¼ ðp=8ÞR4. Note that @X has corners. For a level set function we
used
Table 6
Errors f

h

.02

.02/2

.02/4

.02/8

Table 7
Errors f

h

.03

.03/2

.03/4

.03/8

.03/16

.03/32
uðx; yÞ ¼minðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; x� yÞ; ð38Þ
which is continuous, but only piecewise smooth, with jumps in the first derivatives.
Table 7 indicates that the algorithms based on HL;� (with � ¼ h) and HL;~� (defined by (37)) are converging at a rate of about

OðhÞ, while the FDMH algorithms give approximately second order convergence. The cause of the reduced rates of
convergence for HL;~� and FDMH2 is no doubt the lower regularity of the level set function u.

Table 8 shows the sensitivity to grid shifts for this example. As in Examples 1 and 2, these ratios indicate that the worst
case errors are at most a small multiple of the average errors shown in Table 7.

Example 5. In this example X ¼ ½�1;1� � R1, and f ðxÞ ¼ ex. In the previous examples, FDMH2 gave fourth order accuracy for
smooth data. In each case where the rate of convergence was less than Oðh4Þ, the data had reduced regularity. These results
might give the impression that FDMH2 always gives fourth order accuracy for sufficiently smooth data. However, this one-
dimensional example shows that FDMH2 is generally only third order accurate, as can be seen in Table 9. We include this
example because we were unable to construct any multidimensional examples with smooth data that showed less than
fourth order accuracy.
or Example 3. (capsule region) using a smoother level set function.

HL;~� (64) FDMH1 (64) FDMH2 (64)

Error Rate Error Rate Error Rate

2.00e�2 4.22e�3 8.59e�5
4.56e�3 2.13 1.06e�3 1.99 5.37e�6 4.00
1.13e�3 2.01 2.66e�4 1.99 3.31e�7 4.02
2.78e�4 2.02 6.63e�5 2.00 2.04e�8 4.02

or Example 4. X � R2 is a half disk.

HL;� , � ¼ h (64) HL;~� (64) FDMH1 (64) FDMH2 (64)

Error Rate Error Rate Error Rate Error Rate

1.23e�2 4.20e�3 3.86e�3 1.75e�3
5.91e�3 1.06 1.08e�3 1.96 9.54e�4 2.02 3.21e�4 2.45
2.25e�3 1.39 4.46e�4 1.28 2.42e�4 1.98 7.35e�5 2.09
1.28e�3 0.81 1.99e�4 1.16 5.87e�5 2.04 1.73e�5 2.10
5.17e�4 1.31 9.64e�5 1.05 1.47e�5 1.98 4.69e�6 1.89
2.94e�4 0.84 5.03e�5 0.94 3.65e�6 2.01 1.03e�6 2.19



Table 8
Sensitivity to grid shifts for Example 4. X � R2 is a half disk.

h FDMH1 (64) FDMH2 (64)
Ratio Ratio

.03/2 1.45 2.01

.03/4 1.38 2.48

.03/8 1.45 2.26

.03/16 1.38 2.59

Table 9
Errors for Example 5. One-dimensional example.

h FDMH1 (512) FDMH2 (512)

Error Rate Error Rate

.04 2.72e�4 3.57e�7

.04/2 6.70e�5 2.02 4.20e�8 3.09

.04/4 1.66e�5 2.01 5.18e�9 3.02

.04/8 4.13e�6 2.00 6.57e�10 2.98

.04/16 1.03e�6 2.00 7.89e�11 3.06
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Example 6. In this example X � R2 is the open disk x2 þ y2 < 1, which we represent with a signed distance function. The
integrand is f ðxÞ ¼ jxj. We rotated the grid by 45�. The exact value of the integral is I ¼ 4=3. The point of this experiment
is that f has a jump in its first derivatives. According to Table 10, the algorithm based on HL;~� defined by (37), and both
FDMH algorithms are converging at (or close to) a rate of Oðh2Þ. The algorithm based on HL;� (with � ¼ h) is converging at
a lower rate, approximately Oðh1:5Þ.

Table 11 shows the sensitivity to grid shifts for this example. The results are similar to the results of the sensitivity tests in
Examples 1, 2 and 4. FDMH2 is more sensitive than FDMH1, but in each case, the largest error is only a small multiple of the
average error.

Example 7. In this example, we relax the assumption that the level set is a manifold. The integrand is f ðx; yÞ ¼ 1, and the
level set function is
Table 1
Errors f

h

.05

.05/2

.05/4

.05/8

Table 1
Sensitiv

h

.05

.05/2

.05/4

.05/8
u1ðx; yÞ ¼maxð1� ðx� 1Þ2 � y2;1� ðxþ 1Þ2 � y2Þ: ð39Þ
The level set u1ðx; yÞ ¼ 0 consists of two circles that touch at a single point. This level set function has a jump in its derivative.
In addition, its zero level set u1 ¼ 0 fails to be a manifold, due to the way that the curves are joined together. For comparison,
we also consider the level set function
u2ðx; yÞ ¼maxð1� ðx� 1=2Þ2 � y2;1� ðxþ 1=2Þ2 � y2Þ: ð40Þ
0
or Example 6. X � R2 is a disk. f is not smooth.

HL;�; � ¼ h (128) HL;~� (64) FDMH1 (64) FDMH2 (1024)

Error Rate Error Rate Error Rate Error Rate

3.28e�3 9.71e�4 1.05e�3 1.23e�4
1.18e�3 1.47 2.37e�4 2.03 2.60e�4 2.01 3.06e�5 2.01
3.83e�4 1.62 6.48e�5 1.87 6.47e�5 2.01 7.70e�6 1.99
1.49e�4 1.36 1.67e�5 1.96 1.60e�5 2.02 1.87e�6 2.04

1
ity to grid shifts for Example 6. X � R2 is a disk. f is not smooth.

FDMH1 (64) FDMH2 (1024)
Ratio Ratio

1.96 2.50
1.15 2.53
1.17 2.53
1.17 2.59
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Fig. 2. Example 7. Level set formed by joining two circles. Errors as a function of grid refinement for FDMH1 (diamonds), FDMH2 (circles), HC;� (squares).
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The level set function u2 also has a jump in its derivative, but because of the way that the two circles are joined together, its
zero level set consists of a manifold. We tested FDMH1 and FDMH2, as well as HC;�, with � ¼ 1:5h, recording the maximum
errors of a large number of random grid shifts. Fig. 2 shows that there is a large difference in accuracy between the two cases
(manifold and non-manifold) for the FDMH algorithms, especially for FDMH2. For HC;�, the convergence rate observed for the
−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
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−0.5

0

0.5

1a b

Fig. 3. Example 8. Heat equation. Plot (a) shows the initial data, and plot (b) shows the solution at t = .125, computed using FDMH1.



Table 12
Errors for Example 8. Initial-boundary value problem for the heat equation.

h Time steps HC;�; � ¼ 1:5h FDMH1 FDMH2

Max. error Rate Max. error Rate Max. error Rate

.025 20 9.479e�4 4.108e�4 1.217e�4

.025/2 40 2.462e�4 1.95 1.093e�4 1.91 2.970e�5 2.03

.025/4 80 6.266e�5 1.97 2.787e�5 1.98 7.962e�6 1.90

.025/8 160 1.593e�5 1.97 7.136e�6 1.97 2.049e�6 1.96
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non-manifold case is not very different from that of the manifold case (about 1.25 in the former compared to 1.5 in the lat-
ter). For FDMH1, the convergence rate is 2 for both cases. However, for FDMH2 the convergence rate drops from 2 in the man-
ifold case to 1, or even slightly less, in the non-manifold case.

Example 8. In this example we test our approximate Heaviside functions as a source term in an initial-boundary value prob-
lem for the heat equation on the square ½�1;1� 	 ½�1;1�. The problem is
Table 1
Errors f

h

.05

.05/2

.05/4

.05/8
v t ¼ vxx þ vyy þ 10ð2r2 � 1=4ÞHð1=4� r2Þ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

vð�1; y; tÞ ¼ vð1; y; tÞ ¼ vðx;�1; tÞ ¼ vðx;1; tÞ ¼ 0;

vðx; y;0Þ ¼ sinðpxÞ sinðpyÞ � 10
8 ðmaxð0;1=4� r2ÞÞ2:

8><
>: ð41Þ
The solution of this problem is
vðx; y; tÞ ¼ e�2p2t sinðpxÞ sinðpyÞ � 10
8
ðmaxð0;1=4� r2ÞÞ2: ð42Þ
The source term is discontinuous along the circle r ¼ 1=2, and the solution has jumps in the second order derivatives along
r ¼ 1=2. We used the ADI method to approximate the solution, and recorded the maximum errors at t = .125 for various mesh
sizes. Fig. 3 shows a contour plot of the initial data, and the solution at t = .125. In all cases, we used a step size of Dt ¼ h=4,
where h ¼ Dx ¼ Dy. Table 12 shows the maximum ðL1Þ errors at the terminal time. All three of the discrete Heaviside func-
tions in this test appear to result in approximately second order convergence rates. Clearly the FDMH algorithms are more
accurate than the commonly used HC;� (with � ¼ 1:5h) approximation. The FDMH2 algorithm gives the best results in this
experiment.

Example 9. In this example we solve a Poisson problem on the square ½0;2� 	 ½0;2� with homogeneous Dirichlet boundary
conditions:
vxx þ vyy ¼ 10ð2r2 � 1=4ÞHð1=4� r2Þ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2 þ ðy� 1Þ2

q
;

vð�1; yÞ ¼ vð1; yÞ ¼ vðx;�1Þ ¼ vðx;1Þ ¼ 0:

(
ð43Þ
The solution of this problem, which is
vðx; yÞ ¼ 10
8
ðmaxð0;1=4� r2ÞÞ2; ð44Þ
is C1 with jumps in the second order derivatives. We discretized vxx þ vyy using the standard five-point difference approx-
imation for the Laplacian, and employed a standard Poisson solver. As in Example 8, we tested HC;� with � ¼ 1:5h, and both
FDMH algorithms. Both of the FDMH approximations give more accurate results than HC;�, as can be seen in Table 13. More-
over, FDMH2 is more accurate than FDMH1. Fig. 4 compares the solutions using all three methods on a coarse mesh. Recalling
that the actual solution vanishes for r > 1=2, it is evident from Fig. 4 that the solution computed using the FDMH discreti-
zations capture this feature of the solution better than the one using HC;�.
3
or Example 9. Poisson problem with C1 solution.

HC;�; � ¼ 1:5h FDMH1 FDMH2

Max. error Rate Max. error Rate Max. error Rate

3.374e�3 2.117e�3 5.069e�4
8.804e�4 1.93 5.976e�4 1.85 9.740e�5 2.38
2.234e�4 1.98 1.598e�4 1.90 2.410e�5 2.01
5.686e�5 1.97 4.036e�5 1.99 6.056e�6 1.99
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Fig. 4. Example 9. Poisson equation. Side view of solutions on a coarse mesh. Plot (a) shows the solution using HC;� with � ¼ 1:5h, plot (b) shows the solution
using FDMH1, and plot (c) shows FDMH2. The maximum of the actual solution is � :078.
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